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It is necessary to be able to predict the lifetime of a battery in target applications in order to make sound technical and commercia
t the system design stage. In general, accurate lifetime prediction requires more than knowledge of ageing processes and the a
attery models. A concise procedure linking user requirements, operating regimes and operating conditions of batteries to agein
nd loss of performance has to be used. Quantified end-of-life criteria have to be defined with the details of the application requ
ind. To verify lifetime prediction models it is necessary to have data of the battery when new and immediately before replaceme
f post mortem analysis and detailed data of the operation. This paper describes a procedure that can be used for lifetime predict
ome of the requirements for a prediction and discusses the principles of battery models and their potential use for lifetime predic
2004 Elsevier B.V. All rights reserved.
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. Introduction

Being able to predict the lifetime of a battery is of im-
ense technical and commercial importance when planning

ystems, selecting the most suitable battery, determining the
perating conditions and planning replacement intervals for
atteries. A successful prediction requires knowledge of (a)
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the ageing processes within a battery which lead to a
of performance, (b) the stress factors which induce ag
and influence the rate of ageing, and (c) an understan
of the relationships between the stress factors and the
ing processes. Detailed models which describe the pe
mance of a battery are necessary to predict the lifetime
not sufficient—even if the models are capable of simula
the performance of aged batteries.

Some of the most important differences between th
vestigation of ageing processes and the development o
formance models on the one hand and lifetime predictio
the other are:

A. Lifetime prediction has to take into account the ope
ing conditions of the application which often lead t
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complex combination of stress factors and do not usu-
ally induce one dominant ageing process. As a result, all
ageing processes that may occur in a battery will have to
be considered simultaneously, including different ageing
rates, and the effect of every ageing mechanism on one
another has to be considered. Abusive operating condi-
tions have to be taken into account if they are the result
of proper planning for the most cost-effective system.

B. Lifetime prediction has to combine all effects into one
figure of merit: (EOL), regardless of the severity of the in-
dividual ageing processes. Clear and unambiguous quan-
titative definitions for end-of-life have to be established.
End-of-life depends on the nature of the application. De-
sign parameters of batteries can change EOL significantly
even if the ageing processes are quantitatively identical.

C. Lifetime prediction deals with the entire battery system,
not cells, and has to include battery-related effects which
are difficult to take into account when focusing on ageing
processes on an electrode or cell level.

D. Lifetime prediction has to be done from the application
and user point of view and needs to be decision oriented.
Two frequently-asked questions are:
• How long will a battery of a specific type and man-

ufacturer last under certain operating conditions and
how will the lifetime change if the operating condi-
tions would be changed?
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2.1. Performance, function and lifetime

The performance of a battery as regards a certain require-
ment (e.g. capacity, high rate discharge power at various SOC
and temperatures, charge acceptance and self-discharge) can
be measured and assessed using a scalar value such as Ah or
time until a certain voltage limit has been reached.

A function, the ability to achieve a technically or
commercially1 desirable effect, can either be fulfilled or not,
and the term state-of-function which is often used[1] should
be considered to have either the value 1 or 0 when making
lifetime predictions during the planning stage. If an inter-
nal combustion engine can start with the high-rate discharge
power delivered by the battery in its application-typical state-
of-charge and temperature, then the state-of-function is 1, if
the engine cannot be started, the state-of-function is 0. State-
of-function therefore includes the properties of the system as
a whole and is not only focussed on the performance of the
battery.

The battery has reached its EOL, if the state-of-function
is 0.2 This definition is true even in cases where the bat-
tery will be able to fulfil the required function again once its
application-typical condition is improved, e.g. after recharg-
ing, a regeneration regime or modification of the operating
conditions (higher temperature and SOC in the example of
starting an internal combustion engine (ICE), cycling to re-
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• How long will a new design of battery or a battery w
new material compositions last in a well-known ty
of operation?
Lifetime prediction will only be a useful tool if thes

questions can be answered.
. Manufacturers cannot test their batteries for the full ra

of applications in which the batteries are used. Th
partly a question of time and expense, but also a q
tion of lack of detailed knowledge concerning the us
the batteries in various applications. For renewable
ergy systems, for instance, there are very few com
data sets which describe the use of the battery fully
commissioning to final replacement. The real challe
of lifetime prediction, therefore, is predicting the lifetim
of a battery under operating conditions for which there
no life time tests and for which results of existing lifeti
tests cannot easily be transferred because the cond
during the test are not sufficiently similar to those in
application.

This paper will discuss these points, describe the req
ents for making lifetime predictions for batteries and p

ide an outlook on some promising approaches.

. Terminology

In this paper the following terminology will be used
ake a clear description of the concept of lifetime predic
ossible.
ove acid stratification, etc.). It is presumed that end-of
riteria for planning purposes can always be linked to a s
erformance value and that it is not necessary to know
xact change of voltage or current over time when usin
attery.

.2. Short-term performance prediction and long-term
ifetime prediction for planning purposes

For safety reasons and for customer satisfaction it
nterest to predict the performance of a specific battery i
mmediate future. A warning that the battery may no lon
ulfil a certain function must come so early that the requ
ction can still be taken, but for cost reasons it is unaccep

o issue a warning signal much too early. Also, early war
f imminent failure which turns out to be incorrect will le

o ignoring the warning signal in consumer products s
s portable electronic equipment or in automobiles. Prod
hich provide performance prediction, for instance for

1 An example of a commercially desirable effect is the ability of a ba
o prevent the frequent start up of a diesel generator in a renewable
ystem. The more frequent the diesel has to start up because the
as lost its capacity or its charging characteristics have degraded, the
ill be the cost of electricity delivered. The economic function which c
e used to determine EOL is: cost of energy before and after replac
f the battery. Technically the battery can be continued to be opera

he renewable energy system after its state-of-function as defined he
ecome 0.
2 This definition presumes that the battery, when new, can always ful

equired function.
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back-up time in uninterruptible power systems or for starting
of ICEs, are commercially available or are under development
[2,3]. They usually rely on the measurement of the battery
performance in the recent past and extrapolate to the likely
performance and state-of-function under future conditions.

In this paper, such short-term prediction of performance
for a specific battery for which detailed measurements un-
der operating conditions are always required will not be dis-
cussed. Instead, the focus is the long-term prediction of life-
time as required for planning purposes, addressing issues of
financing and likely replacement periods during the life of
the system. To do this, the average properties of the battery
(model, type and manufacturer) at the beginning of its life-
time have to be used and prior knowledge of their degradation
under various conditions of use has to be available. Lifetime
prediction as defined here is carried out at the planning stage
for developing products and optimizing the operating regime.

2.3. User requirements, operating conditions and
operating regime

The user requirements are power and energy demand,
the necessity to store energy and restrictions on the instal-
lation conditions, such as ambient temperature. The user re-
quirements determine the operating conditions currentI(t),
v (
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2.4. Stress factors and ageing processes

Ageing processes are changes in the structure of the com-
ponents of a battery or in the materials used in the battery. The
changes lead to changes in the properties of the battery and
are, under the normal constraints of operation, irreversible,
e.g. corrosion and sulphation once it has accumulated over
a long period of time. In flooded lead acid batteries, acid
stratification can usually be reversed at any point in time and
is therefore not considered an ageing process whereas acid
stratification in batteries with immobilized electrolyte is ir-
reversible and therefore an ageing process.

There are two different types of ageing processes: those
which lead to slow degradation and a gradual loss of perfor-
mance, and those which have no or virtually no impact on
the performance until they suddenly lead to a major problem
(sudden death). In cells, this is for instance the occurrence of a
short circuit or dendrite formation, and in batteries, corrosion
of the interconnection between cells.

Stress factors are statistical parameters or weighted scalar
variables which are calculated from the time series of the
operating conditions voltage, current, temperature and SOC
and link the operating conditions to the lifetime of batteries
observed in an application. Stress factors are, for instance,
cycling under partial-state-of-charge, operation at high tem-
perature and high charging voltage or long time intervals be-
t ed
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oltageV(t), temperatureT(t) and state-of-charge SOCt)
hich is a calculated value. The operating conditions
end on the systems design, the selection of the size an
f the battery, the energy and time availability for rech

ng and the operating regime. Temperature is not only
ected by heat generation within the cells but also by
ransfer to or from the cells and therefore the installa
onditions. The other operating conditions are also affe
y the installation conditions via the effect of tempera
n the battery voltage. The operating conditions of a

ery are also a function of the operating regime which
ludes the selection of the charging characteristics,
ge settings during charging and discharging, and sp
ettings such as frequency of equalization charge or
harge.

Operating conditions can be abusive under certain
itions, but still reflect good planning principles and l

o the overall technically and economically best soluti
n example of abusive operating conditions within the c

ext of good planning principles is the long time betw
ull recharges from which most batteries in renewable
rgy systems suffer. Even if an optimal charge controll
sed, the time between full recharges can be months

n certain installations a full charge with full conversion
ll discharged material and creation of homogeneous
oncentration and state-of-charge of the electrode may
ccur throughout the whole lifetime. For lifetime predicti

herefore, abusive conditions must be taken into accoun
t is not possible to ignore them on the grounds of poor p
ing.
ween reaching full charge.3 These terms are normally us
o describe empirically well-known damaging operating c
itions but do not in themselves describe any irrevers
hanges of the battery components or materials. Stress f
nly create conditions under which ageing processes o
nd their rate (overall or at certain locations) increases.

Stress factors are therefore the result of user requirem
mbient conditions, operating regimes and battery de
nd are a convenient way of describing damaging condi
hich induce aging and/or increase the ageing rate. It sh
e realized that, under identical user requirements, am
onditions and operating regimes, a VRLA battery, a floo
ead–acid battery, and a flooded lead–acid battery wit
lectrolyte circulation system will have a different tempe

ure at the end of charging by virtue of their designs. A
ven if the same charging characteristics would be use
oltage and current time series would differ and the re
ng stress factors for these three types of batteries wou
ifferent.

Operating conditions, stress factors and ageing proc
an be linked in a simplifying manner by using a ma
seeTable 1, [4]) which describes the effect of the oper
ng conditions and stress factors on each ageing mecha

3 For the development of models it is not necessary to use and
tress factors as all damaging conditions are completely described
perating conditions. However, for discussion of damaging condition
onvenient to use stress factors rather than the raw time series of v
urrent, temperature and SOC because they link the experience o
haracterizes damaging operating conditions to the operating conditi
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Table 1
Qualitative description of the relationships between some stress factors and ageing processes[4]

Ageing processes
(stress factors)

Corrosion of the
positive grid

Hard/irreversible
sulphation

Shedding (loss of
material)

Water loss/drying
out

AM degradation
(reduction of
surface)

Electrolyte
stratification

Long time at low
states of charge

Indirect through low
acid concentration
and low potentials

A strong positive
correlation: longer
time at a low SOC
accelerates
hard/irreversible
sulphation

No direct impact None None Indirect effect.
Longer time leads to
higher sulphation
and thus influences
the stratification

Ah-throughput No impact No direct impact Impact through
mechanical stress

No direct impact Loss of active
material surface,
larger crystals

A strong positive
correlation: higher
Ah-throughput leads
to higher
stratification

Charge factor A strong indirect
impact because a
high charge factor
and an extensive
charge is associated
with a high charging
voltage (high
polarisation of
electrode)

Negative
correlation, impact
through regimes
with high charge
factors which
reduce the risk of
sulphation

Strong impact
through gassing

Strong impact No direct impact A strong positive
correlation: higher
charge factor leads
to lower
stratification

Time between full
charge

Strong negative
correlation: shorter
time increases
corrosion

Strong positive
correlation: frequent
full recharge
decreases
hard/irreversible
sulphation

Negative
correlation,
increasing with
decreasing time

Negative correlation No direct impact A strong positive
correlation: higher
Ah-throughput leads
to higher
stratification

Temperature Strong impact,
positive correlation

High temperature
helps to more fully
recharge the battery
(more sulphate can
be recharged). On
the other hand, high
temperature leads to
more hard sulphate
at a low SOC

No direct impact Increasing with
increasing
temperature

Low impact high
temperature
degrades
negative
electrode
expanders

No direct impact

For instance, a high temperature will accelerate the rate of
corrosion, but will reduce the rate of formation of hard, ir-
reversible sulphation products. Such a matrix does not take
into account that ageing processes may have an effect on the
magnitude of a stress factor—e.g. corrosion leads to lower
mass utilization and therefore a higher Ah-throughput of the
available active mass—and that the rate of an ageing process
might be affected by the degradation caused by other age-
ing processes. Mathematically, therefore, a set of differential
equations rather than a set of linear independent equations
have to be used to describe the relationships correctly.

Table 1shows the qualitative links between stress factors
and ageing processes. Although only a few stress factors and
their impact on the ageing processes are shown it is clear that
stress factors can simultaneously reduce the rate of progress
of one ageing process and increase the rate of progress of
another. Quantifying these effects requires many simplifica-
tions and will only be possible if minor effects are ignored.

3. Description of lifetime prediction concept

The concept for lifetime prediction proposed in this paper
is shown inFig. 1.

The user requirements (load profile and energy availability
over time), ambient temperature and installation conditions,
operating regimes, battery design and size will lead to the
operating conditions of the battery, the time series of voltage,
current, temperature and SOC.

From the operating conditions, stress factors are calcu-
lated which describe those aspects of the operating con-
ditions which are well-known to be linked to a reduced
lifetime. In a recent paper[5], a number of stress factors
have been defined for classifying batteries into categories of
similar use, and the mathematical formula presented which
were used to calculate the stress factors from the volt-
age, current, temperature and SOC time series of the bat-
tery:



H. Wenzl et al. / Journal of Power Sources 144 (2005) 373–384 377

Fig. 1. Schematic diagram of the concept of lifetime prediction: The operating conditions of the battery and the stress factors which induce ageing processes
and modify the rate of ageing are the result of the user requirements, operating regime and battery properties. Ageing processes affect the performance of
the battery depending on its properties. Changes of the performance can be used to modify the operating regime and determine the end-of-life if a suitable
quantitative criterion has been defined.

• temperature acceleration factor and low temperature fac-
tor;

• charge factor;
• cycling at partial-state-of-charge;
• Ah-throughput;
• average time between full charge;
• time at low SOC;
• partial cycling.

In addition, voltage is of course a stress factor, but calcu-
lating a single scalar value from the voltage time series of
a battery which is used in cyclic operation with long time
intervals between full charge can lead to results which are
difficult to interpret. High voltage with the associated risk of
corrosion is also contained in the stress factors charge factor
and time between full charge. A publication containing a full
discussion of stress factors used for a categorization process
is currently under preparation[6].

When using battery models which useV(t), I(t) andT(t)
as inputs, it is not necessary to define stress factors because
all the information is directly available from the data.

The interaction of operating conditions, stress factors and
ageing processes is only schematically represented inFig. 1
but shown in more detail inTable 1. It is obvious that a quan-
titative relationship between operating conditions, stress fac-
t th the
g ngly
d d the
i to ac-
c s to
t

ss of
a lec-
t s in

the structure and composition of materials of the components
of the battery. Battery models capable of calculating the per-
formance of the battery during the ageing processes can use
exact end-of-life criteria as a filter which determines whether
the required function can still be fulfilled. If not, the state-of-
function is zero and EOL is reached. However, as discussed
in Section4.1, other battery models can also be used to trans-
late the accumulated ageing processes into an end-of-life cri-
terion.

The number of ageing processes contained inFig. 1can be
extended to include “sudden death” ageing processes, such as
an internal short circuiting, the result of poor maintenance,
etc., by using stochastic models and probability functions
which are dependent on all the other factors.

The speed with which the ageing processes proceed and
performance values are reduced can be used to modify the
operating regime of the battery for planning purposes or ulti-
mately of course as a closed control loop for on-line process
control. Although variations of the operating regime are lim-
ited, there are usually some parameters which can be altered
in such a way that the ageing processes proceed more slowly.

The examples given so far have always been made with
clear reference to lead–acid batteries. However, it should
be pointed out that both the terminology and the concept
of lifetime prediction are applicable to all types of battery
chemistries.

4

suc-
c rent
c ely
t oo.
ors and ageing processes has to be limited to those wi
reatest impact and even with this limitation is exceedi
ifficult. The interdependence of ageing processes an

mpact of ageing processes on stress factors is taken in
ount by the feedback loop linking performance change
he operating conditions.

Ageing processes such as sulphation, shedding, lo
ctive material surface, corrosion and drying out of the e

rolyte (for VRLA batteries) lead to irreversible change
. Requirements for lifetime prediction

In this section the various requirements for making a
essful lifetime prediction are discussed. Even if a diffe
onceptual process of lifetime prediction is used, it is lik
hat the following considerations will have to be made, t



378 H. Wenzl et al. / Journal of Power Sources 144 (2005) 373–384

Fig. 2. Current of a battery (225 Ah at C20) during starting of a railway traction engine. The cold cranking current of the battery as defined in DIN EN 50342
(current which the battery can supply at−18◦C for at least 10 s without the voltage dropping below 7.5 V; 1.25 V/cell) is also shown. The maximum current
drawn exceeds the cold cranking current for approximately 0.2 s.

4.1. Precise and quantified definition of end-of-life
(EOL)

Lifetime prediction is a projection of possibility or proba-
bility in a single figure of merit, end-of-life, which describes
whether a particular function (e.g. starting an internal com-
bustion engine or operation of a safety system for a certain
duration) is possible or not at the desired moment. A quan-
tified definition of when the state-of-function will become 0
and end-of-life is reached is therefore necessary. To do this,
a threshold condition of the battery has to be defined in terms
of state-of-charge, temperature, acid stratification, etc. and
a performance value defined which can be linked to state-
of-function. The process of starting an internal combustion
engine provides a good example.

Fig. 2 shows the current and power of a battery during
starting of a diesel engine of a railway traction vehicle un-
der normal standby conditions. For a short-term performance
predictions, the voltage is measured every time the engine is
started and the voltage/time curve analyzed. By comparing
this curve with parameters from engine start up in the past, a
projection into the future at different temperatures and SOC
can be made, see for instance[2,3].

For lifetime prediction for planning purposes, such mea-
surements are not available and the performance value of the
battery, which will enable starting of the engine, has to be de-
fi nt
w le to
p p-
p t
t rent
f ired
f ce

could be that the battery has to be able to provide its nominal
cold cranking current for 3 s at the lowest temperature which
has to be taken into account and at the lowest state-of-charge
and the most unfavourable conditions that will exist during
operation.

The use of such an application-oriented end-of-life crite-
rion may appear unwieldy; however, it leads to decisions on
the probable lifetime of the battery which closely reflects the
technical and financial requirements. The usual criterion for
EOL used in many tests, i.e. capacity under nominal condi-
tions has dropped to a certain percentage, will lead to very
similar results if it is assumed that the performance values
of the battery will drop very quickly once the value used in
the test has been reached. This, however, cannot be auto-
matically assumed to be correct. In the Qualibat project[7],
lifetime tests have been carried out where the battery capacity
which was used as performance value for lifetime decreased
more or less linearly for VRLA batteries (seeFig. 3) and an

F D of
6 ries
w

ned differently.Fig. 2also shows the cold cranking curre
hich the battery used in this application has to be ab
rovide at−18◦C for 10 s without the battery voltage dro
ing below 1.25 V/cell (DIN EN 50342).Fig. 2suggests tha

he engine will start if the battery can provide this cur
or only 3 s (disregarding the much higher current requ
or the first 0.2 s). A suitable end-of-life criterion for instan
ig. 3. Capacity loss of VRLA batteries as a result of cycling to a DO
6% at C10 [7]. A linear capacity loss is observed for most of the batte
hich were tested (15 in all).
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EOL criterion of 60% versus 80% doubles the lifetime of the
battery.

Other frequently used end-of-life criteria such as total Ah-
throughput, total number of cycles or years of operation do
not take any application-specific requirements into account.
They are based on standard lifetime tests and presume that
the operating condition in the application can be linked to the
conditions of the tests and that the same EOL values apply.
This obviously is not a very accurate and application-specific
criterion for EOL.

4.2. Lifetime prediction and lifetime tests

Lifetime prediction is relatively simple if there is either
a very good empirical link between test results and lifetime
achieved or there is a close similarity between the test pro-
cedure used and the operating conditions in the application.
Close similarity is, however, difficult to establish when using
accelerated tests. A good empirical basis exists, for instance,
in the car industry for conventional SLI application. The way
SLI batteries are tested and the performance values that have
to be achieved during operation cannot easily be linked to
the normal operating conditions in a car. However, experi-
ence has shown that batteries which perform well in tests also
achieve a lifetime which customers find satisfactory. Lifetime
p nt
b sible
b

ca-
t out
i y is
a tion.
H oper-
a sys-
t low
a s of
l ight-
f ries
w klift

trucks. A closer look, however, reveals that the operating con-
ditions of forklift truck batteries, such as depth-of-discharge,
charging conditions as a function of temperature and depth of
discharge, average discharge current, variations of discharge
current and rest periods at low SOC vary greatly. It is by no
means clear what the impact of these operating conditions is
on the lifetime of the battery.

In applications such as renewable energy systems, normal
test procedures carried out to characterise the battery pro-
vide only limited information on the suitability of the battery
because the conditions of use in the application and the test
procedure differ too much. Only dedicated test procedures
have the potential to provide meaningful results. Work in the
Qualibat project[7] which has devised test procedures which
cause failure of batteries from predominantly one ageing pro-
cess only is a first step to make lifetime predictions possible
for batteries in applications where failure usually occurs from
only one ageing process. However, as soon as there is a num-
ber of ageing processes which together lead to the failure of a
battery, this approach has its limitations.Fig. 4schematically
shows the problem of linking test procedures, for which life-
time tests exist, to the range of operating conditions which
are to be investigated and the uncertainties of extrapolating
from the results.

Battery testing takes a long time, and the use of accelerated
tests raises concerns about the lack of similarity between
t tion,
w ugh
e iction
m nted
a time
p and
e ot be
s

4

a
n nec-

F s and rke
a

rediction providing information on the lifetime of differe
atteries in different usage patterns of vehicles is not pos
ut also not required.

If the operating conditions of the battery in its appli
ion are very similar to life tests which have been carried
n the laboratory, then predicting the lifetime of a batter
lso reasonably straightforward using simple extrapola
owever, such cases are rare and probably only float
tion of batteries in uninterruptible power supplies and

ems with a battery stabilized dc intermediary circuit al
ccurate prediction of lifetime with the use of the result

ifetime tests. Another case that seems to allow a stra
orward use of lifetime tests is cyclic operation of batte
ith frequent full recharges, such as those found in for

ig. 4. Schematic diagram illustrating the link between test procedure
nd D to the operating conditions marked X is still problematic.
est procedures and operating conditions of the applica
here the range of operating conditions is large. Altho
xperience can additionally be used to enhance pred
ethods, this requires knowledge of many well-docume
nd comparable installations. As a result, the need for life
rediction methods to interpolate between test results
xtrapolate outside the tested range remains and cann
ubstituted even by a large test program.

.3. Verification of lifetime prediction

Verifying lifetime prediction is very difficult because
umber of data sets from many different installations are

operating conditions. How to extrapolate between test procedures mad A, B, C
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essary and they are difficult to obtain: battery properties (in
particular capacity) at the beginning of installation, operating
conditions during the application and a determination of the
battery properties once the end-of-life has been reached. A
track record of calculating from a range of different field data
the correct lifetime of a number of batteries with their indi-
vidual characteristics or, as a lower requirement, calculating
the correct order of lifetimes that have been achieved by a
number of different batteries will then allow predictions for
planned systems:

• lifetime of a well-characterised and known battery for a
planned system with sufficiently well-defined future oper-
ating conditions;

• effect of changes in the operating regime on the life-
time expectancy, e.g. changing the charging characteristics
and voltage thresholds or the frequency with which a full
charge will be carried out;

• lifetime of a newly developed battery for which there exists
no track record.

Verification is of course only possible if the variation of
battery properties and operating conditions have a certain
range so that interpolation and extrapolation is possible. If all
data for verification are only for one type and manufacturer
of batteries, then extrapolation to another battery is possible,
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5.1. Performance-based lifetime models

Most of the performance values used to define end-of-life
can be modelled for a new battery. Usually, a few tests are
sufficient to parameterise the models and then the voltage,
current, power output or uptake, state-of-charge, etc., can be
predicted at different current profiles and temperatures. The
Shepherd model[8] is one of the first of such models to
simulate the voltage during discharging and charging.

Limited accuracy of these models is less a problem than the
difficulty of handling the performance of a battery once age-
ing processes have started to influence battery performance
noticeably or once severe inhomogeneity has been induced
by partial cycling. The so-called 17.5% test of Volkswagen
AG [9], for instance, leads to a reduction of the amount of Ah
recharged once stratification builds up. Although the capacity
after a full recharge does not change in the first few cycles, it
is obvious that performance values such as cold start crank-
ing and residual capacity are very difficult to model during
such operation.

When the battery is new, the valuesPi describing the per-
formance requirementi can be written as a function of the
operating conditions:Pi = fi(T, U, I, SOC).

Once the operation of the battery over time has led to in-
homogeneity, this general expression has to be modified to
include the history of the battery since the timet , when it
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ut risky and certainly not verified. The same applies
xtrapolation from one cell to a battery because the incre
ifferences between cells during ageing are highly rele

or reaching end-of-life.

. Lifetime models

Lifetime prediction is impossible without models wh
nterpolate and extrapolate between the results of life
ests. There are two completely different approaches:

. Models based on simulating the change of perform
values of the battery while the various ageing proce
take place. These models will be called performa
based lifetime models and are potentially very accu
for making technical and financial decisions.

. Models which link the end-of-life of a battery to so
parameters which can easily be determined such a
throughput, number of cycles and time since manu
turing. Once a predetermined value of the paramete
been exceeded, the battery is considered to have re
its end-of-life. These models will be called cycle cou
ing or weighted Ah-throughput models and are inhere
limited in their accuracy. However, they are the only m
els which are now available and most planning tools w
incorporate lifetime models use them.

This section will discuss these two different approac
n the light of their suitability for lifetime prediction. A pub
ication for a detailed discussion of the models is planne
1
as last fully charged and electrolyte and electrodes wer
omogeneous state, and the timet2 at which the performanc
alue has to be calculated:Pi = fi(T(t), U(t), I(t), SOC(t)).
lternatively this relationship can be written asPi = fi(T, U,

, SOC,Sj (j = 1–J)) with J being the number of stress fa
ors to be considered andSj some numerical value whic
escribes the inhomogeneity induced, mainly acid strat

ion and inhomogeneous state-of-charge of the electro
nhomogeneity is removed quickly, the impact on ageing
esses can be ignored. “State-of-inhomogeneity” is ther
ndependent of ageing.

An example of the importance of including inhomoge
ty is shown inFig. 5. The voltage, current and Ah-balan
f a starter battery are shown for the first 12 h of a 17

est and, ca. 77 h later, for the last 12 h of the test. Afte
nitial increase in the Ah balance achieved at the end of
harging phase, the Ah-balance begins to fall again alth
he time for charging is longer than the time for discharg
t the end of the first such test, the battery has not suff
ny capacity loss. Post mortem analysis at the end-of-life
eveal, however, severely different Ah-throughput in the
erent regions of the electrode. When calculating the pe
ance of a battery in real applications with severe cyc
t partial-state-of-charge, the effects of such severe inh
eneity have to be taken into account.

Once ageing proceeds and the structure of the ba
omponents and its materials undergo irreversible cha
he relationship has to be written asPi = fi(T(t), U(t), I(t),
OC(t), Ak (k= 1–K) with K being the number of agein
rocesses that have to be considered, orPi = fi(T, U, I,
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Fig. 5. Results of the so-called 17.5% test[9] of a 61 Ah, 12 V starter battery. First 12 h of the test at the left and, approximately 77 h later, last 12 h of the
test at the right. Although the charging time (40 min) is one third longer than the discharging time (30 min) the voltage limit of 14.4 V during charging leads
to a prolonged period of cycling at partial-state-of-charge. The Ah-balance reaches its maximum after seven charging events and then decreases slowly. Post
mortem analyses of batteries cycled in this manner have revealed severe acid stratification and inhomogeneous distribution of state-of-charge on the electrode.
Data courtesy of Akkumulatorenfabrik Moll GmbH + Co. KG, Bad Staffestelin, Germany.

SOC,Sj (j = 1–J), Ak (k= 1–K)) as inhomogeneity has to be
considered in addition to ageing.

As ageing of batteries is usually accompanied by growing
differences between cells which can lead to increased stress
factors and accelerating ageing processes, it is important to
take such effects into account as well.

Models which are capable of simulating performance
and including inhomogeneity and ageing processes can be
broadly distinguished into four groups.

5.1.1. First-principle electrochemical models
These models incorporate many factors including kinetic

and mass transport properties, thermodynamic properties,
mechanical, thermal and electric properties of materials and
dimensions.Fig. 6 shows a schematic diagram of the inter-
action of such models. Inhomogeneity and ageing processes

can be represented by the changes of the properties or di-
mensions. Mathematically, the relationships between oper-
ating conditions and loss of performance are expressed as
a set of differential equations. Typical examples are, for in-
stance, the models by Caselitz[10], Liaw et al.[11], Gu et al.
[12] and Sauer[13,14]. Although the models are sometimes
explained using an equivalent circuit diagram, they should
be distinguished from models based explicitly on equivalent
circuit diagrams.

5.1.2. Equivalent circuit diagrams
Every component of the battery which contributes to the

transport of charge carriers or generation of a voltage drop
is represented by a component of an equivalent circuit dia-
gram: voltage and current sources, resistors, capacitors and
inductances. Inhomogeneity and ageing processes are rep-

F ical m ith ther
p

ig. 6. A schematic diagram showing a “first-principles” electrochem
henomena in an electrochemical cell to predict battery performance[12].
odel that combines reactions and transport kinetics and coupled wmal
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resented by the changes of the values of the components of
the equivalent circuit diagram. Many one-dimensional mod-
els have been proposed, and very early Euler[14] has pro-
posed a model to investigate the spatial distribution of the
current in a new battery. More recently, an equivalent circuit
diagram including spatial distribution modelling has been
used by Sauer[15] to investigate electrolyte stratification
[16].

5.1.3. Analytical models with empirical data fitting
Interpolation and extrapolation from test results and field

data can be used for lifetime prediction by means of param-
eter fitting. The Shepherd model[8] belongs to this class
of models. Where there is a wealth of data and the ap-
plications are reasonably uniform, this approach might be
successful. Where there are only few data and the simi-
larity between test results or field data and the applica-
tion under investigation is unclear, this approach is not
possible.

5.1.4. Artificial neural networks (ANN)
ANN (see for instance[17] have a tremendous potential

to discover relationships between inputs (here operating con-
ditions and stress factors) and outputs (here ageing processes
and performance values) and do not rely on a detailed un-
derstanding of the mechanisms which link input and output.
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total Ah-throughput of the battery achieved during cycling
until the battery fails (e.g. number of full cycles multiplied
by the nominal capacityCN) andndenotes the Ah-throughput
that has already occurred.

In mechanical engineering, this approach is used to de-
termine the lifetime of components from bridges to aero-
planes and is extended to cope with different types of events
E which occur sequentially and can all happen very of-
ten, i.e.NE, the number of events E which can occur until
the component fails, is very large (for a recent review see
[18]).

A component will fail if
∑

nE × 1/NE (sum over all
events E) = 1 or the lifetime that has been used up isL ×∑

nE × 1/NE with L being the lifetime of the battery which
can be expected under the combination of stress events E
occurringnE times each. As each stress event E is also as-
sociated with a certain durationtE, the life expectancy un-
der different combinations of stress events E can always be
calculated.

Applying this approach to batteries requires the same as-
sumptions as those made in mechanical engineering:

1. It is possible to define stress events which induce only a
small amount of incremental loss of lifetime and thus can
occur very frequently until the battery fails.

2. The loss of lifetime caused by a stress event does not de-
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re-
or lifetime prediction these models can only be used w
here are sufficient data to train and verify the ANN.
odels predicting the short-term performance, this prob

an be overcome. For lifetime prediction, many more
ets than now available are required. Aspects of an a
ial neural network can be used for any of the above m
ls.

Spatial differences and temporal changes can be mod
ell using “first-principle” and “equivalent circuit model

f they have been devised in a suitable manner.
Details of these models, results, potential and limitat

hat may exist will be discussed in a paper which is un
reparation.

.2. Cycle counting or weighted Ah-throughput models

.2.1. Cycle counting models
All of these models describe the lifetime of a batt

n terms of a fixed magnitude (e.g. Ah-throughput or ti
hich is used up during use. A battery operated in float o
tion at a certain voltage and temperature for which life

ests predict a lifetime of 10 years, i.e. 3650 days, is con
red to lose 10% of its lifetime each year. This is a gene
sed approach for lifetime prediction and can be formul
athematically as “Proportion of lifetime which has b
sed up =n× 1/N” with N being the number of events whi
an occur during the lifetime andn the number of even
hich have already occurred. For float operation,N= 3650
ays for a battery with 10 year lifetime andn is the number o
ays that have already passed. For cycling operation,N is the
pend on the previous stress event (for batteries this m
that the end of a stress event has to be defined as full c
and homogeneous acid concentration and state-of-c
of the electrodes) and is independent of the accumu
loss of lifetime that the battery has suffered so far.

. The total loss of lifetime caused is either independe
the sequence of the stress events or the stress ev
which occur are distributed statistically throughout
lifetime of the battery, i.e. the battery is not operated
at float operation for half of its lifetime and then s
sequently cycled for the other half of its lifetime, b
float operation and cycling happen more or less alte
tively.

Cycle counting methods—despite making some
rude and simplifying assumptions—are used in a num
f planning tools which are used to simulate systems a
stimate the lifetime of the battery, such as Hybrid2[19] or
VSyst[20]. A description of how this simple approach m
e used without unreasonably simplistic assumptions w
escribed in a second paper.

.2.2. Weighted Ah-models
Weighted Ah-throughput models are also based on th

umption that during use of the battery, the lifetime is u
p proportionally to the total Ah-throughput. However, th
odels use a modified approach compared to the cycle c

ng model and take into account that certain operating
itions may lead to an increased rate of ageing wherea
rs may lead to a decreased rate of ageing. The equ

nE × 1/NE (sum over all events E) = 1 above is the
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fore modified and an effective Ah-throughput is calculated:
Aheff = ∑

wE × nE × AhE (sum over all events E) with AhE
being the Ah-throughput of an event E,nE the number of
events E andwE the weight or severity associated with the
event E. The battery is considered to fail once the effective
Ah-throughput exceeds the total Ah-throughput of the bat-
tery. The effective Ah-throughput can be smaller or larger
than the total Ah-throughput.

In a paper by Drouilhet and Johnson[21], this approach
has been used to select the type of battery (NiCd or lead–acid)
for a renewable energy system in Alaska where the battery
was expected to be operated at reasonably high currents (I1
range) for 30 min minimum time of autonomy. The weighting
factors were based on depth-of-discharge and discharge rate
and estimated from general principles and test results publicly
available on the data sheet.

Puls et al.[22] have developed a model with PV systems
in mind. The weighting factors used are temperature, time
between full charge (to take growth of sulphate crystals and
risk of sulphation into account) and a parameter based on the
lowest SOC reached during cycling at partial-state-of-charge
(to take the formation of acid stratification into account). The
weighting factors were calculated using a parameter fit.

Another example for the use of this model is the lifetime
prediction for forklift trucks used by the German battery in-
dustry association ZVEI[23]. The battery is considered to
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